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SUMMARY

B Y no
Supersonic profiles of minimum pressure drag for a given thickness
ratio and for a given area have been determined with the use of a non-
linear pressure relation and are compared with minimum-drag profiles
found by linearized theory. The results show that the profiles are
determined with sufficient ‘accuracy by linear theory over the entire
supersonic Mach number range since the drag coefficients for these
profiles are only slightly higher than those for optimum profiles deter-
mined by nonlinear theory. Linear theory appears to be adequate for
determining profiles of minimum drag for other auxiliary structural
conditions since moderate deviations from the optimum shape have only
e small influence on the pressure drag.

The parameters determining the airfoil shape for a given thickness

. ratio found by both the linear and nonlinear theory are presented in

graphs as a function of the base pressure coefficient. With the use of
these results, the optimum profiles for any stream Mach number and thick-
ness coefficlent are readily determined. A compariBon of the pressure
drag coefficients for optimum profiles determined by linear and nonlinear
theory 1is presented for the Mach mumber range from 1.5 to 10.0. 1In
addition, several optimum profiles for a given srea have been calculated
by both the linear and nonlinear theory.

INTRODUCTION

Drougge (reference 1) has determined the airfoil section shape for
minimum pressure drag at supersonic speeds subject to such auxiliary
conditions as given bending and torsional stiffness. These calculations
were made by using the linearized expression for the pressure coefficient;
the effect of a base was not considered. Recently, Chapman (reference 2)
has shown that the section shape for minimum pressure drag as determined
by linearized theory may have a blunt trailing edge. . The use of linear-
ized theory for determining optimum profiles facilitates the mathematical
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development; however, the results are subject to question particularly
at high-supersonic Mach, numbers.

The purpose of the present paper is to compare the section shapes
for minimum pressure drag (subject to certain auxiliary conditions)
determined by linear and nonlinesr theory in order to estimate the
errors introduced by the linearized form of the pressure coefficient
and to determine its range of validity for calculations of this nature.
For this purpose, it was considered sufficient to examine two problems.
The problems chosen were the determination of the profile for minimum
drag for a given thickness ratio and the determination of the profile
for minimm drag for a given ares.

The nonlinear form of the expression for the pressure coefFiclent
used in the present analysis is derived in reference 3 where it is.
shown to be I1n excellent agreement with the exact expression for stream
Mach numbers greater than 1.5. The variation of base pressure coeffi-
cient with stream Mach number was assumed in order to determine actual
airfoil shapes. This base-pressure curve was based 1n part upon experi-
mental date and the known variation of vacuum pressure coefficient with
Mach nunmber. -

NOTATION
X chordwise distance from leading edge
Y airfoll ordinate
4
c airfoil chord; also, >+ 1
Y ratio of specific heat at constant pressure to specific heat
at constant volume
X
X = =
c
=L
y =2
M stream Mach number

P pressure coefficient




NACA TN 2623 .3

t thickness coefficient

n=1-2%

3 flow deflection angle

0 = md /
cq drag coefficient

A airf611 area

Subscripts:

1 front surface

2 rear surface

b base

v vacuum ,
W refers to doﬁble—wedge profile

opt optimum

TE trailing edge

ANATYSIS AND DISCUSSION

The pressure drag of an airfoil is the drag .due to the normal forces
acting over the airfoil surface. . For a profile with & blunt trailing
edge the base drag must be added to the drag due to the normal forces
over the forward surfaces to give the total pressure drag. With the
surface pressure coefficient demoted by P, the airfoil shape by Y(X),
the chord by c¢, the base height by Y;, and the base pressure coef-

ficient by P, the pressure drag coefficient Cq of a thin symmetric
two-dimensional airfoil at zero angle of attack is given approximately by

.-
2 ay .. 2 ay Ty
Ca“c"L (P~’Pb)5}—(\dx—c\L‘P'deX"Pb_c—

)
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b4

Y . :
or with x = %, vy = and ¥y, = ?b, the pressure drag mey be written as

1 .

Profile for minimum drag for a given thickness ratio.- In order to
determine the profile for minimm drag for a given thickness ratio, 1t
is required to determine the function y(x) and the base height b
which make cg & minimum. For supersonic flow, to a high order of

approxiﬁlation, the pressure coefficient 1s a function only of the local

slope % and the stream Mach number. By use of the calculus of varia-

X5
tions, any integral of the form [ F(%)dx can be shown to have
1

a stationary value for % = Constant (reference 4, for example). Thus,

since the integrand of equation (1) is a function only of the slope %,

the profile of minimum drag has plane surfaces. Then, with § = % and

the .notatioq of figure 1, the drag coefficient mey be written as
c, = 2x)9 P + 2(1.\- % )98 - ¥Ry (2)
_ Where X; ié the location of maximum thickness and
P) = P(9;) Pp = P(95)
Then with
al=-2x11— 132:_%%;‘1— h—l-%

wvhere +t 1s the thickness coefficient, equation (2) may be written as

) cq = t[Pl - P, + (h - l)Pb] - (3)
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. Reference 3 shows that

5 ,
oy + 1 y + 1\, 2 )
P—ﬁ[————e zs.”/( 1) TS (%)

where M_ 1s the stream Mach number and 7 is the ratio of specific
heats at constant pressure and constant volume, is in excellent agree-
ment with the pressure coefficients given by the exact shock or expan-

sion relations for 1.5 §.Mm < o, Tt may be noted that this expression
approaches both the linearized value and the hypersonic value in the appro-

priate Mach number ranges. With 6 = md as the independent variable,
equation (4) becomes

2
P = = K(6)
m2c )

where

K(g) = e(e + V6% + 02)

Then, with these relations substituted into equation (3), the drag
coefficient becomes

- 2t c 2 ‘ '
cd--nEKl-th+(h-1)§mP£\ (5)
where

- It _.m _h

o e arrma e s e a m s ¢ A P T Y i et s v e T <
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Values of X and h are required which meke the drag a minimum.
Thus, solutions are required for the equations

aCd‘ acd
5% = © 3 = °

for x1 and bh.

The base pressure coefficient is dependent upon Mach number, airfoil
shape, Reynolds number, the nature of the boundary layer, and so forth.
Of these the Mach number is by far the most’ important parameter. Since
the base pressure depends to some extent on the base height, a term

oP.
involving :ﬁ? should be included in the second equation used to deter-

mine the airfoil of minimum drag. The omission of this term however is
of little consequence. Its effect is to modify slightly the effective
value of the base pressure. For turbulent boundary layers at high
Reynolds numbers this change is small and the change in ailrfoil shape
due to the neglect of this term is of little consequence. If the term

P
?ﬁ? is omitted, the equations defining the airfoil of minimum drag are

dc
S - (0% v efiy) -0 (6)
Bcd ot fod 2 -
where
k' = K - K2

06 ‘1/—
92 62 + C2
From the solutions of equations (6) and (7) for 6, and 65 as

functions of (Mm? - l)Pb, the location of maximum thickness and the
trailing-edge thickness are determined from
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xl=£ll

261 .
L (8)

- 6,8

oo - 2 1 %1% < <

—=1-h 1+92(mt 91> <261_92—m‘t—23]>

The lower limit for mt Insures that the rear upper and lower surfaces
can intersect only at the tralling edge. The upper limit for mt
insures that the locatlion of maximum thickness will lie between the
leading and tralling edges of the airfoil.

It is important to note that 6, and 6, are functions only of
- 1 2
(Mu? - l)Pb. Therefore, x; and ¥/t are functions only of tVMu? -1
and (M“? - l)Pb. The number of parameters has thus been reduced from
three to two. From equation (8) the trailing-edge thickness is zero

6.6 .
for mt = '29_1_29_3 thus, the profile of minimum drag has a sharp
1~ v2 -
trailing edge for this condition. For profiles with a sharp trailing
edge, only equation (6) need be solved and the location of maximum

thickness then is a function only of tVM.Z - 1. For mt = 267, the

the position of maximum thickness for minimum drag is at the trailing
edge. For values of mt > 20,, no mathematical minimum for the drag

exists.

The solution of the equations defining the profile of minimum
pressure drag is especially simple for linearized flow (reference 2,
for example). The approximete expression for the pressure coefficient
glven by linearized theory is

and the equations which determine the profile of minimum drag are

dc

d—i— 2 2 = = -
a_g_m3(el +92) 0 or 67 = -6 (9)
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Ocg _ 4 2 n°B,
Bi.=m_2(_l;ee+me)=0 or 92=T (10)

Then, the location of maximum thickness and the tralling-edge thickness
are found to be

_ 2t
o
b
2, o\ P (11)
B, 1 (Thegs th
T ~ 5% T T x 'T‘ =T 732

2
m=Pp

For a profile with a sharp tralling edge mb S - b , the
N

familiar result,that; for minimum drag, the location of maximum thickness
is at the midchord is found as the solution of equation (9) for w, = O.

The solution of equations (6) and (7) is shown in figure 2 where 6,
and 6, are given as functions of (Mm?'— l)Pb. The dashed vertical

line at _-(Ma? - l)Pb equal to 1.428 is the limiting value of the
vacuum pressure coefficilent for infinite Mach number. The solutions for
linearized flow are also shown in figure 2 for comparison. It may be
noted that the values of 67 for linearized flow are in good agreement
with the results of this enalysis, whereas 6o shows appreciable devia-

tion. Curves of tVﬁa? - 1> are alsoc shown as functions of (Ma? - l)Pb

in figure 2. The upper set of curves gives the value of tVMu? - 1 for
which the optimum profile has the maximm-thickness location at the

trailing edge and the lower set of curves gives the value of ¢ Mu? -1

for which the optimum profile has a sharp trailing edge. At a given value
of (M“? - 1)Pb, true minimm-drag profiles do not exist for values of

tVMu? - 1 greater than the values given by the upper curve. The profile
of least drag, however, under those conditions is one which has the

maximum-thickness location at the trailing edge. For values of ~qﬁ§a? -1
less then those of the lower curve, the profile of minimum drag has a
sharp trailing edge and the position of maximum thickness for minimum drag
may be determined from figure 3. Profiles for minimum pressure drag are
readily determined with the use of -figyres 2 and 3. For a glven base
pressure coefficient and Mach number, velues of 6 and 6, are found
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190 < ‘/ 7T <

from figure 2. Then for -25————5— = t|M, - 1 = 204, the position
1" 72 )

of maximum thickness and the trailing-edge thickness are found from

equations (8) for a given thickness coefficienmt. For values of

tVM 2 - l 2—2132—— ‘the profile has a sharp traili edge and the

o el 9 g/ Y ng
position of maximum thickness for minimm drag is determined directly
from figure 3. '

In order to show more clearly the varlation of the shape of the
airfoil for minimum drag with Mach number, a number of profiles have
been calculated for the base pressures shown in figure k. The base
pressure coefficients in this figure are, in part, based upon some
knowledge of the base pressures for turbulent boundary leyers and, in
part, upon the variation of the vacuum pressure coefficient with Mach
number. For comparison the vacuum pressure coefficient Py 1s also
shovm. .

In figure 5 the position of maximum thickness and the trailing-
edge thickness for minimm drag are presented as functions of Mach
number for the base pressure coefficients of figure 4. Here it may be
noted that, for a given thickness ratio, the minimum-drag airfoil has
8 sharp trailing edge for the lower Mach numbers and at higher Mach
numbers the trailing edge is blunt. Further, the Mach number at which
the minimum-drag profile first has a blunt trailing edge is higher for
the thinner airfoils. For a given thickness ratio, the position of
maximum thickness moves rearward with increasing Mach number until it
18 located at the trailing edge..

Also shown in figure 5 are the optimum profiles for the 6- and
10-percent-thick airfoils calculated from the linearized equations (11).
For the 6-percent-thick airfoil the position of maximum thickness remains
fixed at the midchord up to a stream Mach number of approximately 5. At
Mach numbers greater than 5, the position of maximum thickness moves
rearwvard and the trailing-edge thickness increases in a manner similar
to that determined from the nonlinear equations. For the 10-percent-
thick profile the position of maximum thickness and the trailing-edge
thickness show an erratic behavior at the low Mach numbers, that is,
at low values of the base pressure coefficient. At a stream Mach number
of 1.5 the optimum position of maximum thickness is at the 0.56 chord.

At Mach numbers from 1.5 to 2.1 the maximum-thickness location moves
forward, and at higher Mach numbers it moves rearward in s manner similar
t0 that determined from the nonlinear equations. In generel, the linear-
ized theory predicts the position of maximum thickness falrly accurately
over a wide Mach number range but does not predict the optimum trailing-
edge thickness so well.

T e e
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In order to illustrate the effect of the airfoil geometry on drag,
the drag coefficlents of the optimm profiles have been calculated for
the 6- and 10-percent-thick airfoils. In figure 6 the ratio of the

optimum drag coefficient Cq ot to the drag coefficient of a double-
0

wedge alrfoil de is shown as a function of the stream Mach number

for the profile determined by both the nonlinear and linear theory. For
the 10-percent-thick airfoil the drag presented is not a minimum above

a Mach number of approximately 6. The drag curve sbove this Mach number
is that for an airfoil with the meximum thickness located at the trailing
edge. Here 1t may be noted that the optimum profiles have substantially
lower drag than the double-wedge profiles, particularly at high Mach
numbers. Further, the drag reduction is considerably greater for the
10-percent-thick airfoil than for the 6-percemt-thick airfoil. The
dashed curves of figure 6 correspond to the drag coefficients for the
profiles found by linear theory. In calculating the drag, however, the
nonlinear expression for the pressure coefficient was used; that 1is, ,
only the geometry of the airfoils was calculated by linear theory. Here
it mey be noted that the drag for the profiles determined by linear
equations is only slightly higher than the drag of the optimum profiles
found with the nonlinear relations. The largest difference in drag .
between the 6-percent-thick profiles determined from the nonlinear equa-
tions and the profiles determined from the linear equations is less than
4 percent; for the 10-percent-thick profiles the differences in drag are
even less.

Profile for minimum drag for a given area.- The problem of determining
the profile of minimum drag and satisfying a given structural condition
is an isoperimetric problem of the calculus of varlations. The equations
for determining the supersonic profile of minimum drag for a given struc-
tural.condition have been developed in reference 2. The equations for
determining the airfoll of minimum drag for a given area (or torsional
strength) are

7
2 0P [t
¥ Ey_--"(ﬁ')
1
A=2f y ax \ : (12)
0 |
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where y' = %%, A 1is a constant to be determined from the solution,

A 1is the area, and the subscript TE refers to the values at the
tralling edge of the airfoil. The solution of these equations for the
linearized form of the pressure coefficient gives the profile shape as

bt x(,_x

where x, is the position of maximum thickness and is given by

L.
_ 124
1-mPb

LA

and the thickness coefficient is given by

_ 3, mby,
t-?‘ﬁ(}*m)

The solution of equations (12) for the nonlinear form of the pressure
coefficient was obtained by an iterative procedure.

Figure T presents a comparison of the profiles determined by linear
and nonlinear theory for A = 0.05 for several Mach numbers and for
the base pressure coefficients given in figure 4. The linearized theory
gives a location of maximum thickness farther forward and a smaller
trailing-edge thickness and thickness ratio than given by nonlinear theory.
These differences in geometry of the profiles determined from linear -
and nonlinear theory follow the same trend as for the airfoils of a given
thickness ratio; this trend may be expected for other auxiliary structural
conditfons as well. The drag of the profiles found by lihear and non-
linear theory (equation (k4) was used for computing the pressures for the
evaluation of the drag in each case) differed by less than 2 percent for
Mach numbers from 2 to 10.

/

CONCLUDING REMARKS

The results show that the profile shape for minimum drag for a given
thickness ratio or for a glven area is determined with sufficlent accuracy -
by linear theory over the entire supersonic Mach number range since the drag
coefficients for these profiles are only slightly higher than those for
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optimm profiles determined by nonlinear theory. It would appear that
linear theory should also be adequate for determining profiles for
minimum drag for other auxiliary structural conditions since moderate
deviations from the optimum shape have only a small influence on the
pressure drag coefficient,

It appears that, when airfoils with finite trailing-edge thicknesses
are considered, the linearized theory may be used for aetermining profiles
of minimum drag (although not the drag itself) at least up to Mach numbers
of 10.

Langley Aeronautical Lgboratory
National Advisory Committee for Aeronautics
Langley Field, Va., November 1k, 1951
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Figure 1.~ Optlimum proflle for a gilven thickness ratio,
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